top of page

Daily Challenge 

Seven zebras, thirteen hyenas, and two lions find themselves alone in MathsSavannah. Hyenas can eat zebras. Lions can eat both hyenas and zebras. MathsSavannah is fantastic:​ If a hyena eats a zebra, it transforms into a lion;​ If a lion eats a hyena, it transforms into a zebra;​ If a lion eats a zebra, it transforms into a hyena.​ After some time, no animal can eat another; an equilibrium is reached. The number of remaining animals is as large as possible. What is this number?

Given 10 lines on a plane, what are the possible numbers of intersection points?

Let 𝑚 < 𝑛 be positive integers. Start with 𝑛 piles, each of 𝑚 objects. Repeatedly carry out

the following operation: choose two piles and remove 𝑛 objects in total from the two piles.

For which (𝑚, 𝑛) is it possible to empty all the piles?

七只斑马、十三只鬣狗和两只狮子独自来到数学草原。 鬣狗可以吃斑马。 狮子可以吃鬣狗和斑马。 数学草原很奇妙:​

  • 如果一只鬣狗吃了一只斑马,它会变成一只狮子;​

  • 如果一只狮子吃了一只鬣狗,它会变成一只斑马;​

  • 如果一只狮子吃了一只斑马,它会变成一只鬣狗。​

一段时间后,没有动物可以再吃其他动物,达到了平衡状态。 剩下的动物数量尽可能多。 这个数字是多少?

给定平面上的10条直线,可能的交点数量有哪些?

令 𝑚 < 𝑛 为正整数。开始时有 𝑛 堆,每堆 𝑚 个物体。反复执行以下操作:选择两堆并从这两堆中总共移除 𝑛 个物体。对于哪些 (𝑚, 𝑛) 组合,可以将所有堆清空

  • Instagram

©2024 by Mathsmatter. Proudly created with Wix.com

bottom of page